Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Development ; 149(13)2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35686626

RESUMEN

Cells reposition their nuclei for diverse specialized functions through a wide variety of cytoskeletal mechanisms. During Drosophila oogenesis, 15 nurse cells connected by ring canals to each other and the oocyte contract, 'dumping' their cytoplasm into the oocyte. Prior to dumping, actin cables initiate from the nurse cell cortex and elongate toward their nuclei, pushing them away from ring canals to prevent obstruction. How the cable arrays reposition nuclei is unknown. We found that these arrays are asymmetric, with regional differences in actin cable growth rate dependent on the differential localization of the actin assembly factors Enabled and Diaphanous. Enabled mislocalization produces a uniform growth rate. In oocyte-contacting nurse cells with asymmetric cable arrays, nuclei move away from ring canals. With uniform arrays, these nuclei move toward the adjacent ring canal instead. This correlated with ring canal nuclear blockage and incomplete dumping. Our data suggest that nuclear repositioning relies on the regulated cortical localization of Diaphanous and Enabled to produce actin cable arrays with asymmetric growth that push nuclei away from ring canals, enabling successful oogenesis.


Asunto(s)
Proteínas de Drosophila , Drosophila , Actinas/fisiología , Animales , Núcleo Celular , Drosophila/fisiología , Forminas , Oocitos , Oogénesis/fisiología
2.
Development ; 148(15)2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34323271

RESUMEN

Perturbations to animal-associated microbial communities (the microbiota) have deleterious effects on various aspects of host fitness, but the molecular processes underlying these impacts are poorly understood. Here, we identify a connection between the microbiota and the neuronal factor Arc1 that affects growth and metabolism in Drosophila. We find that Arc1 exhibits tissue-specific microbiota-dependent expression changes, and that germ-free flies bearing a null mutation of Arc1 exhibit delayed and stunted larval growth, along with a variety of molecular, cellular and organismal traits indicative of metabolic dysregulation. Remarkably, we show that the majority of these phenotypes can be fully suppressed by mono-association with a single Acetobacter sp. isolate, through mechanisms involving both bacterial diet modification and live bacteria. Additionally, we provide evidence that Arc1 function in key neuroendocrine cells of the larval brain modulates growth and metabolic homeostasis under germ-free conditions. Our results reveal a role for Arc1 in modulating physiological responses to the microbial environment, and highlight how host-microbe interactions can profoundly impact the phenotypic consequences of genetic mutations in an animal host.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Drosophila/metabolismo , Drosophila/fisiología , Microbiota/fisiología , Proteínas del Tejido Nervioso/metabolismo , Acetobacter/fisiología , Animales , Encéfalo/metabolismo , Encéfalo/fisiología , Homeostasis/fisiología , Larva/metabolismo , Larva/fisiología , Mutación/fisiología , Neuronas/metabolismo , Neuronas/fisiología , Fenotipo
3.
Nat Commun ; 11(1): 5883, 2020 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-33208732

RESUMEN

Mechanical forces are integral to cellular migration, differentiation and tissue morphogenesis; however, it has proved challenging to directly measure strain at high spatial resolution with minimal perturbation in living sytems. Here, we fabricate, calibrate, and test a fibronectin (FN)-based nanomechanical biosensor (NMBS) that can be applied to the surface of cells and tissues to measure the magnitude, direction, and strain dynamics from subcellular to tissue length-scales. The NMBS is a fluorescently-labeled, ultra-thin FN lattice-mesh with spatial resolution tailored by adjusting the width and spacing of the lattice from 2-100 µm. Time-lapse 3D confocal imaging of the NMBS demonstrates 2D and 3D surface strain tracking during mechanical deformation of known materials and is validated with finite element modeling. Analysis of the NMBS applied to single cells, cell monolayers, and Drosophila ovarioles highlights the NMBS's ability to dynamically track microscopic tensile and compressive strains across diverse biological systems where forces guide structure and function.


Asunto(s)
Técnicas Biosensibles/métodos , Células/química , Fibronectinas/química , Nanotecnología/métodos , Animales , Fenómenos Biomecánicos , Técnicas Biosensibles/instrumentación , Línea Celular , Drosophila , Fluorescencia , Humanos , Nanotecnología/instrumentación , Estrés Mecánico
4.
Cytoskeleton (Hoboken) ; 75(7): 323-335, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-30019417

RESUMEN

The actin cortex that lines the plasma membrane of most eukaryotic cells resists external mechanical forces and plays critical roles in a variety of cellular processes including morphogenesis, cytokinesis, and cell migration. Despite its ubiquity and significance, we understand relatively little about the composition, dynamics, and structure of the actin cortex. Adenomatous polyposis coli (APC) proteins regulate the actin and microtubule cytoskeletons through a variety of mechanisms, and in some contexts, APC proteins are cortically enriched. Here we show that APC2 regulates cortical actin dynamics in the follicular epithelium and the nurse cells of the Drosophila ovary and in addition affects the distribution of cortical actin at the apical side of the follicular epithelium. To understand how APC2 influences these properties of the actin cortex, we investigated the mechanisms controlling the cortical localization of APC2 in S2 cultured cells. We previously showed that the N-terminal half of APC2 containing the Armadillo repeats and the C-terminal 30 amino acids (C30) are together necessary and sufficient for APC2's cortical localization. Our work presented here supports a model that cortical localization of APC2 is governed in part by self-association through the N-terminal APC Self-Association Domain (ASAD) and a highly conserved coiled-coil within the C30 domain.


Asunto(s)
Actinas/metabolismo , Proteínas del Dominio Armadillo/metabolismo , Proteínas de Drosophila/metabolismo , Ovario/metabolismo , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Secuencia de Aminoácidos , Animales , Drosophila , Femenino , Unión Proteica , Multimerización de Proteína
5.
Development ; 143(14): 2629-40, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27287809

RESUMEN

Wnt signaling generates patterns in all embryos, from flies to humans, and controls cell fate, proliferation and metabolic homeostasis. Inappropriate Wnt pathway activation results in diseases, including colorectal cancer. The adenomatous polyposis coli (APC) tumor suppressor gene encodes a multifunctional protein that is an essential regulator of Wnt signaling and cytoskeletal organization. Although progress has been made in defining the role of APC in a normal cellular context, there are still significant gaps in our understanding of APC-dependent cellular function and dysfunction. We expanded the APC-associated protein network using a combination of genetics and a proteomic technique called two-dimensional difference gel electrophoresis (2D-DIGE). We show that loss of Drosophila Apc2 causes protein isoform changes reflecting misregulation of post-translational modifications (PTMs), which are not dependent on ß-catenin transcriptional activity. Mass spectrometry revealed that proteins involved in metabolic and biosynthetic pathways, protein synthesis and degradation, and cell signaling are affected by Apc2 loss. We demonstrate that changes in phosphorylation partially account for the altered PTMs in APC mutants, suggesting that APC mutants affect other types of PTM. Finally, through this approach Aminopeptidase P was identified as a new regulator of ß-catenin abundance in Drosophila embryos. This study provides new perspectives on the cellular effects of APC that might lead to a deeper understanding of its role in development.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Procesamiento Proteico-Postraduccional , Proteómica/métodos , Proteínas Supresoras de Tumor/metabolismo , beta Catenina/metabolismo , Animales , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Electroforesis en Gel Bidimensional , Embrión no Mamífero/metabolismo , Desarrollo Embrionario , Epistasis Genética , Immunoblotting , Espectrometría de Masas , Mutación/genética , Fenotipo , Fosforilación , Isoformas de Proteínas/metabolismo , Proteoma/metabolismo , Reproducibilidad de los Resultados , Transcripción Genética , Vía de Señalización Wnt
6.
Mol Biol Cell ; 26(24): 4503-18, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26446838

RESUMEN

The tumor suppressor Adenomatous polyposis coli (APC) plays a key role in regulating the canonical Wnt signaling pathway as an essential component of the ß-catenin destruction complex. C-terminal truncations of APC are strongly implicated in both sporadic and familial forms of colorectal cancer. However, many questions remain as to how these mutations interfere with APC's tumor suppressor activity. One set of motifs frequently lost in these cancer-associated truncations is the SAMP repeats that mediate interactions between APC and Axin. APC proteins in both vertebrates and Drosophila contain multiple SAMP repeats that lack high sequence conservation outside of the Axin-binding motif. In this study, we tested the functional redundancy between different SAMPs and how these domains are regulated, using Drosophila APC2 and its two SAMP repeats as our model. Consistent with sequence conservation-based predictions, we show that SAMP2 has stronger binding activity to Axin in vitro, but SAMP1 also plays an essential role in the Wnt destruction complex in vivo. In addition, we demonstrate that the phosphorylation of SAMP repeats is a potential mechanism to regulate their activity. Overall our findings support a model in which each SAMP repeat plays a mechanistically distinct role but they cooperate for maximal destruction complex function.


Asunto(s)
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Vía de Señalización Wnt , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Proteína Axina/química , Proteína Axina/genética , Proteína Axina/metabolismo , Línea Celular Tumoral , Neoplasias Colorrectales/química , Neoplasias Colorrectales/genética , Drosophila , Proteínas de Drosophila/química , Humanos , Datos de Secuencia Molecular , Mutación , Fosforilación , Unión Proteica , Estructura Terciaria de Proteína , Secuencias Repetitivas de Aminoácido , Relación Estructura-Actividad , Proteínas Supresoras de Tumor/química , beta Catenina/metabolismo
7.
ACS Cent Sci ; 1(8): 431-8, 2015 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-27163005

RESUMEN

Bright signal outputs are needed for fluorescence detection of biomolecules at their native expression levels. Increasing the number of labels on a probe often results in crowding-induced self-quenching of chromophores, and maintaining the function of the targeting moiety (e.g., an antibody) is a concern. Here we demonstrate a simple method to accommodate thousands of fluorescent dye molecules on a single antibody probe while avoiding the negative effects of self-quenching. We use a bottlebrush polymer from which extend hundreds of duplex DNA strands that can accommodate hundreds of covalently attached and/or thousands of noncovalently intercalated fluorescent dyes. This polymer-DNA assembly sequesters the intercalated fluorophores against dissociation and can be tethered through DNA hybridization to an IgG antibody. The resulting fluorescent nanotag can detect protein targets in flow cytometry, confocal fluorescence microscopy, and dot blots with an exceptionally bright signal that compares favorably to commercially available antibodies labeled with organic dyes or quantum dots.

8.
Mol Biol Cell ; 25(21): 3424-36, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25208568

RESUMEN

The tumor suppressor adenomatous polyposis coli (APC) is an essential negative regulator of Wnt signaling through its activity in the destruction complex with Axin, GSK3ß, and CK1 that targets ß-catenin/Armadillo (ß-cat/Arm) for proteosomal degradation. The destruction complex forms macromolecular particles we termed the destructosome. Whereas APC functions in the complex through its ability to bind both ß-cat and Axin, we hypothesize that APC proteins play an additional role in destructosome assembly through self-association. Here we show that a novel N-terminal coil, the APC self-association domain (ASAD), found in vertebrate and invertebrate APCs, directly mediates self-association of Drosophila APC2 and plays an essential role in the assembly and stability of the destructosome that regulates ß-cat degradation in Drosophila and human cells. Consistent with this, removal of the ASAD from the Drosophila embryo results in ß-cat/Arm accumulation and aberrant Wnt pathway activation. These results suggest that APC proteins are required not only for the activity of the destructosome, but also for the assembly and stability of this macromolecular machine.


Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Vía de Señalización Wnt , Proteína de la Poliposis Adenomatosa del Colon/química , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Proteínas del Dominio Armadillo/genética , Proteínas del Dominio Armadillo/metabolismo , Proteína Axina/genética , Proteína Axina/metabolismo , Línea Celular Tumoral , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Drosophila/embriología , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Embrión no Mamífero/citología , Humanos , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/genética , beta Catenina/metabolismo
9.
Development ; 141(1): 51-62, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24257623

RESUMEN

During asymmetric stem cell division, both the daughter stem cell and the presumptive intermediate progenitor cell inherit cytoplasm from their parental stem cell. Thus, proper specification of intermediate progenitor cell identity requires an efficient mechanism to rapidly extinguish the activity of self-renewal factors, but the mechanisms remain unknown in most stem cell lineages. During asymmetric division of a type II neural stem cell (neuroblast) in the Drosophila larval brain, the Brain tumor (Brat) protein segregates unequally into the immature intermediate neural progenitor (INP), where it specifies INP identity by attenuating the function of the self-renewal factor Klumpfuss (Klu), but the mechanisms are not understood. Here, we report that Brat specifies INP identity through its N-terminal B-boxes via a novel mechanism that is independent of asymmetric protein segregation. Brat-mediated specification of INP identity is critically dependent on the function of the Wnt destruction complex, which attenuates the activity of ß-catenin/Armadillo (Arm) in immature INPs. Aberrantly increasing Arm activity in immature INPs further exacerbates the defects in the specification of INP identity and enhances the supernumerary neuroblast mutant phenotype in brat mutant brains. By contrast, reducing Arm activity in immature INPs suppresses supernumerary neuroblast formation in brat mutant brains. Finally, reducing Arm activity also strongly suppresses supernumerary neuroblasts induced by overexpression of klu. Thus, the Brat-dependent mechanism extinguishes the function of the self-renewal factor Klu in the presumptive intermediate progenitor cell by attenuating Arm activity, balancing stem cell maintenance and progenitor cell specification.


Asunto(s)
Proteínas del Dominio Armadillo/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Células-Madre Neurales/citología , Factores de Transcripción/metabolismo , beta Catenina/metabolismo , Animales , Diferenciación Celular , División Celular , Linaje de la Célula , Proliferación Celular , Proteínas de Unión al ADN/biosíntesis , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/biosíntesis , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Células-Madre Neurales/metabolismo , Factores de Transcripción/biosíntesis , Transcripción Genética , Proteínas Supresoras de Tumor/metabolismo , Proteínas Wnt/metabolismo , Vía de Señalización Wnt
10.
J Biol Chem ; 288(19): 13897-905, 2013 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-23558679

RESUMEN

BACKGROUND: Vertebrate APC collaborates with Dia through its Basic domain to assemble actin filaments. RESULTS: Despite limited sequence homology between the vertebrate and Drosophila APC Basic domains, Drosophila APC1 collaborates with Dia to stimulate actin assembly in vitro. CONCLUSION: The mechanism of actin assembly is highly conserved over evolution. SIGNIFICANCE: APC-Dia collaborations may be crucial in a wide range of animal cells. Adenomatous polyposis coli (APC) is a large multidomain protein that regulates the cytoskeleton. Recently, it was shown that vertebrate APC through its Basic domain directly collaborates with the formin mDia1 to stimulate actin filament assembly in the presence of nucleation barriers. However, it has been unclear whether these activities extend to homologues of APC and Dia in other organisms. Drosophila APC and Dia are each required to promote actin furrow formation in the syncytial embryo, suggesting a potential collaboration in actin assembly, but low sequence homology between the Basic domains of Drosophila and vertebrate APC has left their functional and mechanistic parallels uncertain. To address this question, we purified Drosophila APC1 and Dia and determined their individual and combined effects on actin assembly using both bulk fluorescence assays and total internal reflection fluorescence microscopy. Our data show that APC1, similar to its vertebrate homologue, bound to actin monomers and nucleated and bundled filaments. Further, Drosophila Dia nucleated actin assembly and protected growing filament barbed ends from capping protein. Drosophila APC1 and Dia directly interacted and collaborated to promote actin assembly in the combined presence of profilin and capping protein. Thus, despite limited sequence homology, Drosophila and vertebrate APCs exhibit highly related activities and mechanisms and directly collaborate with formins. These results suggest that APC-Dia interactions in actin assembly are conserved and may underlie important in vivo functions in a broad range of animal phyla.


Asunto(s)
Actinas/química , Proteínas Portadoras/química , Proteínas de Drosophila/química , Drosophila melanogaster , Multimerización de Proteína , Proteínas Supresoras de Tumor/química , Animales , Proteína CapZ/química , Proteínas del Citoesqueleto , Forminas , Cinética , Fragmentos de Péptidos/química , Profilinas/química , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido
11.
Genetics ; 190(3): 1059-75, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22174073

RESUMEN

The tumor suppressor Adenomatous polyposis coli (APC) negatively regulates Wnt signaling through its activity in the destruction complex. APC binds directly to the main effector of the pathway, ß-catenin (ßcat, Drosophila Armadillo), and helps to target it for degradation. In vitro studies demonstrated that a nonphosphorylated 20-amino-acid repeat (20R) of APC binds to ßcat through the N-terminal extended region of a 20R. When phosphorylated, the phospho-region of an APC 20R also binds ßcat and the affinity is significantly increased. These distinct APC-ßcat interactions suggest different models for the sequential steps of destruction complex activity. However, the in vivo role of 20R phosphorylation and extended region interactions has not been rigorously tested. Here we investigated the functional role of these molecular interactions by making targeted mutations in Drosophila melanogaster APC2 that disrupt phosphorylation and extended region interactions and deletion mutants missing the Armadillo binding repeats. We tested the ability of these mutants to regulate Wnt signaling in APC2 null and in APC2 APC1 double-null embryos. Overall, our in vivo data support the role of phosphorylation and extended region interactions in APC2's destruction complex function, but suggest that the extended region plays a more significant functional role. Furthermore, we show that the Drosophila 20Rs with homology to the vertebrate APC repeats that have the highest affinity for ßcat are functionally dispensable, contrary to biochemical predictions. Finally, for some mutants, destruction complex function was dependent on APC1, suggesting that APC2 and APC1 may act cooperatively in the destruction complex.


Asunto(s)
Proteínas del Dominio Armadillo/metabolismo , Complejo de Señalización de la Axina/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Vía de Señalización Wnt , Secuencia de Aminoácidos , Animales , Orden Génico , Datos de Secuencia Molecular , Complejos Multiproteicos , Mutación , Fosforilación , Unión Proteica , Transporte de Proteínas , Alineación de Secuencia
12.
Bioconjug Chem ; 22(8): 1491-502, 2011 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-21755981

RESUMEN

We have synthesized fluorescent DNA duplexes featuring multiple thiazole orange (TO) intercalating dyes covalently attached to the DNA via a triazole linkage. The intercalating dyes stabilize the duplex against thermal denaturation and show bright fluorescence in the green region of the spectrum. The emission color can be changed to orange or red by addition of energy-accepting Cy3 or Cy5 dyes attached covalently to the DNA duplex. The dye-modified DNA duplexes were then attached to a secondary antibody for intracellular fluorescence imaging of centrosomes in Drosophila embryos. Bright fluorescent foci were observed at the centrosomes in both the donor (TO) and acceptor (Cy5) channels, because the energy transfer efficiency is moderate. Monitoring the Cy5 emission channel significantly minimized the background signal because of the large shift in emission wavelength allowed by energy transfer.


Asunto(s)
ADN/análisis , Diagnóstico por Imagen/métodos , Colorantes Fluorescentes , Inmunoconjugados/química , Animales , Benzotiazoles , Carbocianinas , Centrosoma/química , ADN/química , Drosophila/citología , Transferencia de Energía , Colorantes Fluorescentes/química , Sustancias Intercalantes , Quinolinas
13.
J Cell Sci ; 124(Pt 9): 1589-600, 2011 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-21486956

RESUMEN

The tumor suppressor Adenomatous polyposis coli (APC) has roles in both Wnt signaling and in actin and microtubule organization. Within the cell, APC proteins have been reported to localize in the cytoplasm, at the cell cortex and in the nucleus. How these localizations relate to the functions of the protein is an aspect of APC biology that is poorly understood. Using Drosophila S2 cells, we have dissected the structural and functional requirements for the cortical localization of Drosophila APC2. Here, we show that both the Armadillo repeats and a novel C-terminal domain are necessary for the cortical localization of APC2 in S2 cells and in the embryo, and that neither domain alone is sufficient for this localization. Furthermore, we show that the Armadillo repeats mediate self-association of APC2 molecules. To test the function of the cortical localization of APC2, we asked whether an APC2 protein deleted for the C-terminal localization domain could rescue APC mutant defects in Wnt signaling and actin organization in the Drosophila embryo. We show that although cortical localization is required for the APC2 function in organizing actin, cortical localization is dispensable for its role in regulating Wnt signaling.


Asunto(s)
Proteínas de Drosophila/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas Wnt/metabolismo , Actinas/genética , Actinas/metabolismo , Animales , Línea Celular , Drosophila , Proteínas de Drosophila/genética , Immunoblotting , Inmunoprecipitación , Microscopía Fluorescente , ARN Interferente Pequeño , Transducción de Señal/genética , Transducción de Señal/fisiología , Proteínas Supresoras de Tumor/genética , Proteínas Wnt/genética
14.
Dev Biol ; 340(1): 54-66, 2010 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-20102708

RESUMEN

The tumor suppressor Adenomatous polyposis coli (APC) is a negative regulator of Wnt signaling and functions in cytoskeletal organization. Disruption of human APC in colonic epithelia initiates benign polyps that progress to carcinoma following additional mutations. The early events of polyposis are poorly understood, as is the role of canonical Wnt signaling in normal epithelial architecture and morphogenesis. To determine the consequences of complete loss of APC in a model epithelium, we generated APC2 APC1 double null clones in the Drosophila wing imaginal disc. APC loss leads to segregation, apical constriction, and invagination that result from transcriptional activation of canonical Wnt signaling. Further, we show that Wnt-dependent changes in cell fate can be decoupled from Wnt-dependent changes in cell shape. Wnt activation is reported to upregulate DE-cadherin in wing discs, and elevated DE-cadherin is thought to promote apical constriction. We find that apical constriction and invagination of APC null tissue are independent of DE-cadherin elevation, but are dependent on Myosin II activity. Further, we show that disruption of Rho1 suppresses apical constriction and invagination in APC null cells. Our data suggest a novel link between canonical Wnt signaling and epithelial structure that requires activation of the Rho1 pathway and Myosin II.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Miosina Tipo II/metabolismo , Transducción de Señal , Proteínas Wnt/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Proteína de la Poliposis Adenomatosa del Colon/genética , Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Animales , Proteínas de Drosophila/genética , Embrión no Mamífero/metabolismo , Genes APC , Miosina Tipo II/genética , Proteínas Wnt/genética , Proteínas de Unión al GTP rho/genética
16.
Dev Dyn ; 238(10): 2622-32, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19718762

RESUMEN

The Drosophila syncytial embryo is a powerful developmental model system for studying dynamic coordinated cytoskeletal rearrangements. Confocal microscopy has begun to reveal more about the cytoskeletal changes that occur during embryogenesis. Total internal reflection fluorescence (TIRF) microscopy provides a promising new approach for the visualization of cortical events with heightened axial resolution. We have applied TIRF microscopy to the Drosophila embryo to visualize cortical microtubule and actin dynamics in the syncytial blastoderm. Here, we describe the details of this technique, and report qualitative assessments of cortical microtubules and actin in the Drosophila syncytial embryo. In addition, we identified a peak of cortical microtubules during anaphase of each nuclear cycle in the syncytial blastoderm, and using images generated by TIRF microscopy, we quantitatively analyzed microtubule dynamics during this time.


Asunto(s)
Actinas , Citoesqueleto , Drosophila melanogaster/embriología , Embrión no Mamífero , Microscopía Fluorescente/métodos , Microtúbulos , Actinas/metabolismo , Actinas/ultraestructura , Animales , Proteínas de Ciclo Celular , Citoesqueleto/metabolismo , Citoesqueleto/ultraestructura , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo
17.
Development ; 136(8): 1283-93, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19279137

RESUMEN

The rearrangement of cytoskeletal elements is essential for many cellular processes. The tumor suppressor Adenomatous polyposis coli (APC) affects the function of microtubules and actin, but the mechanisms by which it does so are not well understood. Here we report that Drosophila syncytial embryos null for Apc2 display defects in the formation and extension of pseudocleavage furrows, which are cortical actin structures important for mitotic fidelity in early embryos. Furthermore, we show that the formin Diaphanous (DIA) functions with APC2 in this process. Colocalization of APC2 and DIA peaks during furrow extension, and localization of APC2 to furrows is DIA-dependent. Furthermore, APC2 binds DIA directly through a region of APC2 not previously shown to interact with DIA-related formins. Consistent with these results, reduction of dia enhances actin defects in Apc2 mutant embryos. Thus, an APC2-DIA complex appears crucial for actin furrow extension in the syncytial embryo. Interestingly, EB1, a microtubule +TIP and reported partner of vertebrate APC and DIA1, may not function with APC2 and DIA in furrow extension. Finally, whereas DIA-related formins are activated by Rho family GTPases, our data suggest that the APC2-DIA complex might be independent of RHOGEF2 and RHO1. Furthermore, although microtubules play a role in furrow extension, our analysis suggests that APC2 and DIA function in a novel complex that affects actin directly, rather than through an effect on microtubules.


Asunto(s)
Actinas/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Animales Modificados Genéticamente , Proteínas Portadoras/genética , Proteínas de Ciclo Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Forminas , Regulación del Desarrollo de la Expresión Génica , Mutación/genética , Unión Proteica , Proteínas Supresoras de Tumor/genética , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo
18.
Curr Opin Cell Biol ; 20(2): 186-93, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18359618

RESUMEN

The adenomatous polyposis coli (Apc) protein participates in many of the fundamental cellular processes that govern epithelial tissues: Apc is directly involved in regulating the availability of beta-catenin for transcriptional de-repression of Tcf/LEF transcription factors, it contributes to the stability of microtubules in interphase and mitosis, and has an impact on the dynamics of F-actin. Thus Apc contributes directly and/or indirectly to proliferation, differentiation, migration, and apoptosis. This particular multifunctionality can explain why disruption of Apc is especially detrimental for the epithelium of the gut, where Apc mutations are common in most cancers. We summarise recent data that shed light on the molecular mechanisms involved in the different functions of Apc.


Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Fenómenos Fisiológicos Celulares , Epitelio/metabolismo , Animales , Apoptosis , Núcleo Celular/metabolismo , Humanos , Proteínas Wnt/metabolismo
19.
Development ; 133(12): 2407-18, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16720878

RESUMEN

Adenomatous polyposis coli (APC) is mutated in colon cancers. During normal development, APC proteins are essential negative regulators of Wnt signaling and have cytoskeletal functions. Many functions have been proposed for APC proteins, but these have often rested on dominant-negative or partial loss-of-function approaches. Thus, despite intense interest in APC, significant questions remain about its full range of cellular functions and about how mutations in the gene affect these. We isolated six new alleles of Drosophila APC2. Two resemble the truncation alleles found in human tumors and one is a protein null. We generated ovaries and embryos null for both APC2 and APC1, and assessed the consequences of total loss of APC function, allowing us to test several previous hypotheses. Surprisingly, although complete loss of APC1 and APC2 resulted in strong activation of Wingless signaling, it did not substantially alter cell viability, cadherin-based adhesion, spindle morphology, orientation or selection of division plane, as predicted from previous studies. We also tested the hypothesis that truncated APC proteins found in tumors are dominant negative. Two mutant proteins have dominant effects on cytoskeletal regulation, affecting Wnt-independent nuclear retention in syncytial embryos. However, they do not have dominant-negative effects on Wnt signaling.


Asunto(s)
Alelos , Proteínas del Citoesqueleto , Proteínas de Drosophila , Drosophila melanogaster/genética , Isoformas de Proteínas , Proteínas Supresoras de Tumor , Animales , Proteínas del Dominio Armadillo/genética , Proteínas del Dominio Armadillo/metabolismo , Adhesión Celular/fisiología , Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Embrión no Mamífero/citología , Embrión no Mamífero/fisiología , Femenino , Humanos , Masculino , Mutación , Ovario/anatomía & histología , Ovario/metabolismo , Fenotipo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Transducción de Señal/fisiología , Huso Acromático/metabolismo , Huso Acromático/ultraestructura , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Proteína Wnt1
20.
J Cell Sci ; 119(Pt 3): 403-15, 2006 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-16418222

RESUMEN

Many epithelial cells are polarized along the plane of the epithelium, a property termed planar cell polarity. The Drosophila wing and eye imaginal discs are the premier models of this process. Many proteins required for polarity establishment and its translation into cytoskeletal polarity were identified from studies of those tissues. More recently, several vertebrate tissues have been shown to exhibit planar cell polarity. Striking similarities and differences have been observed when different tissues exhibiting planar cell polarity are compared. Here we describe a new tissue exhibiting planar cell polarity - the denticles, hair-like projections of the Drosophila embryonic epidermis. We describe in real time the changes in the actin cytoskeleton that underlie denticle development, and compare this with the localization of microtubules, revealing new aspects of cytoskeletal dynamics that may have more general applicability. We present an initial characterization of the localization of several actin regulators during denticle development. We find that several core planar cell polarity proteins are asymmetrically localized during the process. Finally, we define roles for the canonical Wingless and Hedgehog pathways and for core planar cell polarity proteins in denticle polarity.


Asunto(s)
Estructuras de la Membrana Celular/metabolismo , Polaridad Celular/fisiología , Proteínas del Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Proteínas de Drosophila/metabolismo , Transducción de Señal/fisiología , Animales , Drosophila , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...